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ABSTRACT

1
 

This paper introduces a two-dimensional (2-D) processing 

approach for the analysis of multi-pitch speech sounds. Our 

framework invokes the short-space 2-D Fourier transform 

magnitude of a narrowband spectrogram, mapping harmonically-

related signal components to multiple concentrated entities in a 

new 2-D space.  First, localized time-frequency regions of the 

spectrogram are analyzed to extract pitch candidates.  These 

candidates are then combined across multiple regions for obtaining 

separate pitch estimates of each speech-signal component at a 

single point in time.  We refer to this as multi-region analysis 

(MRA).  By explicitly accounting for pitch dynamics within 

localized time segments, this separability is distinct from that 

which can be obtained using short-time autocorrelation methods 

typically employed in state-of-the-art multi-pitch tracking 

algorithms.  We illustrate the feasibility of MRA for multi-pitch 

estimation on mixtures of synthetic and real speech. 
 

Index Terms— 2-D speech processing, Grating Compression 

Transform, multi-pitch analysis, segmental pitch dynamics 
 

1. INTRODUCTION 
 

Estimating the pitch values of concurrent speech sounds from a 

single recording is a fundamental challenge in speech analysis. 

Typical approaches involve processing of short-time and band-pass 

signal components along single time or frequency dimensions.  In 

contrast, in this paper, we address multi-pitch estimation using a 

two-dimensional (2-D) processing framework.  2-D analysis for 

pitch estimation was previously proposed in [1] where 2-D Fourier 

transforms were computed over localized time-frequency regions 

of a narrowband spectrogram, a representation referred to as the 

Grating Compression Transform (GCT).  The GCT was observed 

to coherently represent pitch information in a transformed 2-D 

space and used for a single-pitch estimation task in noise. The 

current paper builds on this previous effort.   
 

First, we show in Section 2 that the GCT of any localized time-

frequency region is capable of accurately representing the pitch of 

a single source across all frequencies. Earlier approaches on the 

GCT [1] were shown to provide accurate pitch measurements only 

in low-frequency portions of the spectrogram.  This finding leads 
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to a novel multi-region analysis (MRA) method for multi-pitch 

signals described in Section 3.  We show that MRA  provides a 

form of separability of pitch information distinct from that 

obtained from short-time autocorrelation analysis used in state-of-

the-art multi-pitch tracking methods [2][3].  Section 4 then 

demonstrates the value of MRA for multi-pitch estimation on 

synthetic and real speech with two-component mixtures having 

typical pitch relations.  Our results show that MRA is a promising 

analysis framework for new or existing multi-pitch tracking 

systems2.  Section 5 concludes with discussion of future directions. 
 

2. BACKGROUND AND FRAMEWORK 
 

Consider a localized time-frequency region [ , ]s n m  (discrete-time 

and frequency: n, m) of a narrowband short-time Fourier transform 

(STFT) magnitude (or log-magnitude) exhibiting harmonic line 

structure.  A simple example of this condition is shown in Figures 

1a and 1b for an impulse train with linearly increasing pitch (125-

200 Hz).  A 2-D sinewave model for [ , ]s n m  is [1] 
 

 [ , ] cos( [ , ])ss n m K n mω≈ + Φ  (1) 
 

where 
sω  denotes the local spatial frequency of the sinusoid, 

[ , ]n mΦ  is a 2-D phase term indicating its orientation, and K is a 

constant DC term.  [ , ]n mΦ  is defined as 
 

 [ , ] sin cosn m n mθ θΦ = +  (2) 
 

where θ  is the angle of rotation of the harmonic lines relative to 

the time axis.   The 2-D Fourier transform of [ , ]s n m  is then 
 

 
( , ) 2 ( , ) 2 ( sin , cos )
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s s
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+ − Ω +
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such that the harmonic line structure maps to a set of impulses in 

the GCT (Figure 1c).  In [1], 
sω  (radial distance of impulses to 

the GCT origin) was observed to be inversely proportional to the 

pitch of [ , ]s n m  for low-frequency portions of the spectrogram: 

0,

1 2
radial

STFT s

fs
f

N

π

ω
= .  We have found, however, that cossω θ  

(vertical distance of impulses to the GCT origin) better represents 

pitch across all frequency regions: 0,

21
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π

ω θ
= .   fs is 

the sampling rate of the waveform, and 
STFTN  is the discrete-

Fourier transform (DFT) length used to compute the spectrogram. 
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Figure 1d compares 0,radialf  and 0,verticalf  computed across multiple 

frequency regions (Figure 1a, rectangles) for a local time segment 

(Figure 1a, arrow) by peak-picking of the GCT magnitude.  While 

0,verticalf  remains constant across frequency regions and 

corresponds to the true pitch value at the center of segment (~160 

Hz),  0,radialf  decreases across frequency regions by ~10 Hz.  This 

effect is presumably due to the increased fanning of harmonic line 

structure in higher-frequency regions with changing pitch.  Note 

that this comparison implies that rotation of the GCT components 

(i.e., θ ) increases from low- to high-frequency regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

3. ANALYSIS OF MULTI-PITCH SIGNALS  
 

This section discusses GCT analysis of multi-pitch signals.  

Section 3.A discusses separability of pitch information in the GCT 

while Section 3.B shows that this separability is distinct from that 

obtained from short-time autocorrelation-based analysis. 
 

A. Separability of Pitch Information in the GCT 

Extending (2) and (3) to the case of N concurrent signals, 
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Here, we approximate the (log)-magnitude STFT of a mixture of 

signals as the sum of the STFT (log)-magnitudes computed for 

each individual signal.  This approximation holds best when the 

contribution to the STFT from distinct sources occupies different 

frequency bands. Nonetheless, as we will show, separation of pitch 

in the GCT can be maintained even when these conditions do not 

necessarily hold, i.e., when a frequency band contains more than 

one source (with or without similar pitch values). The GCT’s 

potential to separate pitch information was previously observed in 

phenomenological analyses by Quatieri [1] and Ezzat, et al [4]. 

To see how this separability can occur, consider a region of the 

spectrogram having two sets of harmonic lines corresponding to 

two distinct pitch trajectories that are constant through [ , ]s n m  

(Figure 2a); the corresponding GCT (Figure 2b) would exhibit two 

sets of impulses along the Ω -axis.  In this case, separability can 

only be achieved when the two pitch values are sufficiently 

different.  The present argument also generalizes to the case when 

the two trajectories in [ , ]s n m  move at the same rate and direction. 

  

Figures 2c and d illustrate a condition in which two pitch 

trajectories have equal pitch values defined at the center of [ , ]s n m  

in time, but are moving in opposite directions at the same rate.  

Despite the overlap of harmonic structure in [ , ]s n m , the GCT 

maintains separability of pitch information due to its explicit 

representation of the underlying temporal trajectories of the two 

sources in the values of 
iθ  in (5) (i.e., 

1 2θ θ θ= − = ). More 

generally, this separability holds under conditions where the rates 

of change of the two pitch trajectories are different (i.e., 1 2θ θ≠ ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Finally, recall from Section 2 that for moving pitch trajectories, θ  

increases from low- to high-frequency regions (Figure 1d).  

Consequently, analysis of multiple regions across frequency and 

time is expected to provide better separability of pitch information 

than that of a single low-frequency region across time as in [1]. 
  

B. Comparison to Short-time Autocorrelation Analysis 

Multi-pitch tracking systems typically obtain pitch candidates from 

autocorrelation analysis of band-pass filtered versions of the 

waveform on a frame-by-frame basis (e.g., [2][3]).  This approach 

provides distinct pitch candidates for a single point in time but 

does not represent the pitch dynamics of multi-pitch signals.  Here, 

we show that the GCT's representation of pitch dynamics within a 

local time segment invokes separability of pitch information 

distinct from that obtained in short-time autocorrelation analysis.   
 

Figure 3 shows analyses of two synthesized concurrent vowels 

with rising and falling pitch contours of 150-200 Hz and 200-150 

Hz across a 200 ms duration.  Figure 3a shows the formant 

structure for the vowels.  In Region 1 (R1), the rising vowel 

exhibits a formant peak while the falling vowel exhibits a valley; in 

Region 2 (R2), a formant peak is present for both vowels.  

Analyses are done at the center of the mixture where both sources 

have pitch values ~175 Hz. 
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Figure 1. (a) Spectrogram with localized regions (rectangles) across 

frequency for a single time segment (arrow); (b) Zoomed-in region from 

(a); vertical (
2

coss

π

ω θ
) and spatial (

2

s

π

ω
) distance between harmonic 

lines; 2-D sinewave orientation (θ ); (c) GCT (magnitude) of (b) with 

sω ,θ , cossω θ ; DC component removed for display purposes. (d) 

Pitch estimates obtained from vertical vs. radial distances to GCT origin. 
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Figure 2. (a) Localized region with two distinct pitch values and no 

temporal change; (b) GCT corresponding to (a); separability occurs along 

the Ω -axis; (c) Localized region with two pitch candidates with the 

same pitch value but different temporal dynamics; (d) GCT 

corresponding to (c); separability from difference in temporal dynamics. 



 

For comparison, two linear-phase band-pass filters centered at the 

formant peaks of R1 and R2 were applied to the waveform.  To 

obtain an envelope [2], filtered waveforms were then half-wave 

rectified and low-pass filtered (cutoff = 800 Hz). The normalized 

autocorrelation ( [ ]xxr n ) was computed for a 30-ms duration of the 

envelopes (Figure 3b-c).  For R1, a single distinct pitch estimate  

and its sub-harmonics are present (Figure 3b, arrow); however, 

[ ]xxr n  for R2 (Figure 3c) reflects the interaction of closely-spaced 

periodicities and appears "noisy".  These observations are similar 

to those observed by Wu, et al. [2] in which these "noisy" bands 

were discarded in favor of those exhibiting a dominant pitch to 

compute a summary correlogram at a single point in time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figures 3e-f show GCTs computed over localized time-frequency 

regions at R1 and R2 (Figure 3d).  A single dominant set of 

impulses, corresponding to a single pitch value, is present in the 

GCT for R1, similar to [ ]xxr n  for R1; however, two distinct sets of 

peaks can be seen for R2 (Figure 3e-f, arrows) corresponding to 

two similar pitch values.  The GCT can therefore separate pitch 

information of two speakers with similar energies and pitch values 

in a localized set of frequency bands by exploiting the temporal 

dynamics of their underlying pitch trajectories.  This separability 

is distinct from that obtained using short-time autocorrelation 

analysis (compare with Figure 3c).  Recall that this separability 

generalizes to the case where source signals exhibit similar 

energies but different pitch values/temporal dynamics (Section 3). 
 

4. MULTI-PITCH ESTIMATION 
 

This section demonstrates multi-pitch estimation using GCT-based 

MRA.  Our goal is to assess the value of GCT-based MRA for 

accurately obtaining pitch estimates rather than assigning estimates 

to distinct speakers across time (i.e., pitch tracking).  Section 4.A 

describes the real and synthetic speech mixtures used.  Section 4.B 

and C describe our analysis and post-processing methods, 

respectively.  Section 4.D presents our results. 
 

4.A Synthetic and Real Speech Mixtures 

Concurrent vowels with linear pitch trajectories spanning 300 ms 

were synthesized using a glottal pulse train and an all-pole formant 

envelope with formant frequencies of 860, 2050, and 2850 Hz and 

bandwidths of 56, 65, 70 Hz (/ae/) [5].  For real speech, two all-

voiced sentences spoken by a male and female were used.  Two 

cases were analyzed to illustrate typical pitch-trajectory conditions: 

1) separate or 2) crossing trajectories within the utterance.  All 

signals were mixed at 0 dB overall signal-to-signal ratio (SSR) and 

pre-emphasized prior to analysis.  True pitch values were obtained 

using a single-pitch estimator on the signals prior to mixing [6]. 
 

4.B GCT-based MRA Methodology 

The log-STFT magnitude was computed for all mixtures with a 25-

ms Hamming window, 1-ms frame interval, and 512-point DFT.  

Time-frequency regions of size 100 ms by 700 Hz were extracted 

from the spectrogram at a 5-ms and 140-Hz region interval in time 

and frequency, respectively.  A 2-D gradient operator was applied 

to the spectrogram prior to extraction to reduce the contribution of 

the DC and near-DC components to the GCT.  To obtain pitch 

candidates for each region, the GCT magnitude was multiplied by 

three binary masks derived from thresholding the 1) overall 

amplitude, 2) gradient ( GCT∇ ), and 3) Laplacian ( GCT∆ ).  The 

thresholds were chosen as max( ) /3GCT , max( ) /3GCT∇ , and 

min( ) / 3GCT∆ .  Region growing was performed on the masked 

GCT, and pitch candidates were obtained by extracting the location 

of the maximum amplitude in each resulting region.  Candidates 

corresponding to the two largest amplitudes were kept for each 

time-frequency region.  In the case where only a single pitch value 

is present, the value is assigned twice to the region. 
 

4.C Post-processing 

For synthetic speech, a simple clustering method was used to 

assign pitch values at each point in time from the candidates of 

GCT-based MRA.  All candidates at a single point in time were 

collected and sorted, and the median of the top and bottom halves 

of the collection were then chosen as the two pitch values. A 

similar technique was used for real speech; however, due to the 

longer duration of these signals, we sought to exploit the temporal 

continuity of the underlying pitch contours in clustering.  At each 

5-ms interval for a time-frequency region, pitch candidates from its 

neighboring regions in time spanning 100-ms and across 

frequencies were combined for clustering.  To compare GCT-based 

MRA with previous work [1], we also assigned to each 5-ms 

interval the two candidates from analyzing a single low-frequency 

region.  Figure 4 illustrates these post-processing methods.  

 

 

 

 

 

 

 

 

 

 

 

 

Finally, oracle pitch values were obtained by assigning to each 

time point the pitch candidate from GCT-based MRA closest in 

frequency to the true pitch values.  The accuracy of these estimates 

is viewed as assessing the value of GCT-based MRA for obtaining 

pitch candidates independent of post-processing (e.g., clustering).   

 

F
re

q
u

e
n

c
y
 (

m
)

* Time (n)

… …

… …

… …

s

..
..

 
Figure 4. Post-processing methods for assigning pitch value at time *; 

's' denotes single low-frequency region used as in [1]; dashed regions 

denote regions used in clustering for synthetic speech; shaded regions 

denote regions used in clustering for real speech.  
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Figure 3. (a) Formant structure of rising- (dashed) and falling-pitched 

(solid) vowels in Region 1 (R1) and Region 2 (R2); (b) [ ]xxr n  for R1 

with lag (at arrow) corresponding to dominant pitch; (c) [ ]xxr n  for R2; 

(d) Spectrogram of concurrent vowels; (e) GCT for R1 with dominant 

pitch (arrow); (f) GCT for R2 with two sets of pitch peaks (arrows). 



 

4.C. Results 

Figures 5 - 7 show estimates for the synthetic and real speech 

mixtures.  The total-best percent error between estimates and truth 

for both source signals was computed at each time point:  
 

 
1 2

1 2

ˆ ˆ

% 100 .
f f f f

error
f f

 − −
 = +
 
 

  (6) 

  

f̂  is the estimate from clustering, single, or oracle closest in 

frequency to the true pitch values 
1f  and 

2f . Table 1 gives 

average %error's (%erroravg) computed across time for all cases.   
 

For the synthetic concurrent-vowels task (Syn1-4, Figure 5), GCT-

based MRA provides accurate estimates under a variety of mixed 

pitch trajectories.  The oracle estimates follow the true pitch values 

with %erroravg < 0.04% while the clustering scheme assigns pitch 

values across time for GCT-based MRA with %erroravg < 1.75% 

(Table 1).  Observe also that the oracle and clustering of pitch 

candidates derived from GCT-based MRA exhibits lower 

%erroravg  than single-region analysis in all cases. 
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Average %errors across time for each mixture and method. 
 Syn1 Syn2 Syn3 Syn4 Real1 Real2 

oracle 0.00 0.00 0.03 0.00 0.00 0.00 

clustering 1.74 1.44 1.00 1.08 5.46 7.91 

single 5.98 14.97 13.24 9.13 42.18 20.13 
 

 

For real speech, the oracle pitch values match truth with 0.00% 

average error in both separate and crossing conditions.  Although 

close to truth for the separate case, it appears that median-based 

clustering is not optimal for exploiting the oracle candidates in the 

crossing case, with jumps in pitch values from distinct talkers (e.g., 

Figure 7c, arrow).  This is likely due to the inability of the 

clustering method to account for points in time in which one 

speaker is dominant in energy.  Nonetheless, the accuracy of the 

oracle estimates demonstrates the feasibility of employing GCT-

based MRA for multi-pitch estimation with an improved post-

processing method.   Finally, as in the synthetic cases, the oracle 

and clustering of the GCT-based MRA pitch candidates 

outperform the single-region method, thereby further illustrating 

the benefits of exploiting multiple regions for analysis. 
 

5. DISCUSSION 
 

This paper has shown GCT-based MRA provides separability of 

pitch information for a variety of multi-pitch signals.  Since the 

GCT can separate pitch information from multiple sources of 

similar energies, the assumption of a single dominant source does 

not need to be invoked when obtaining candidates in localized 

time-frequency regions as typically done for short-time 

autocorrelation analysis (e.g., [2]).  The accuracy of the pitch 

estimates obtained using GCT-based MRA on real and synthetic 

mixtures demonstrates the feasibility of employing this analysis 

framework in conjunction with existing multi-pitch tracking 

techniques (e.g., those based on hidden Markov models [2]).  
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Figure 5.  Concurrent vowel pitch estimates; clustering (x/blue), single 

(square/green), and true pitch values (solid/red): (1) rising 125-175 Hz + 

constant 150 Hz, (2) falling 250-200 Hz + rising 125-150 Hz, (3) rising 

100-150 Hz + rising 175-225 Hz, (4) falling 200-150 Hz + rising 150-

200 Hz.  Estimates start (end) at 50 (250) ms to remove edge effects. 

 
Figure 6. (a) All-voiced mixture spectrogram with separate pitch 

trajectories, Male - "Why were you away a year?" + Female - "Nanny 

may know my meaning."; first 250 ms and last 50 ms excluded to remove 

edge effects in clustering due to initial and final silent regions; (b-d) truth 

(solid/red), oracle (triangle/light blue, b), clustering (x/blue, c), single 

(square/green, d).   

 
Figure 7. As in Figure 6 but with all-voiced mixture with crossing pitch 

trajectories: Male - "Why were you away a year?" + Male - "Nanny may 

know my meaning."; (c) arrow denotes "jump" due to differences in 

energy between sources in localized time-frequency regions.   


